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X-ray Scattering in Two Dimensions from Shapes with an Inclusion 
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The method of molecular shape determination by analysis of small-angle X-ray scattering from dilute 
monodispersive macromolecular solutions is extended to include the effects of a hole and is applied 
to scattering in two dimensions. 

1. Introduction 

In a recent series of  papers Stuhrmann (1970a, b,c; 
see also Wu & Schmidt, 1970) has proposed and ap- 
plied a method for the determination of the surface 
shape of large molecules by the analysis of small-angle 
X-ray scattering data obtained from dilute monodis- 
persive macromolecular solutions. The method uses 
the possibility of varying the mean charge density of 
the solvent to isolate that fraction of the scattered in- 
tensity which is due to the shape of the solute mole- 
cules. By expanding the surface shape in terms of 
spherical harmonics, the spherical symmetry of ori- 
entation of the molecules, which is obtained on ex- 
trapolating to infinitely dilute concentrations, permits 
the expansion coefficients of the shape to be succes- 
sively fitted to the data. 

Two questions arise from the analysis. Firstly, how 
can data from molecules with inclusions be analysed? 
By an inclusion we mean an internal region of the 
molecule where the electron density varies with, and 
is equal to, that of the solvent. Of course, for real 
molecules this is only a first approximation, but it will 
be possible to extend the technique to include realistic 
cases. The original analysis breaks down, since the 
shape function becomes multivalued and hence cannot 
be represented by a straight-forward expansion in 
terms of spherical harmonics. Secondly, is the shape 
determined uniquely? It is not clear that different shapes 
must yield different scattering data. 

We have considered the case of scattering in two 
dimensions. Questions of multivaluedness and unique- 
ness are conceptually the same in two and three dimen- 
sions, while, since the corresponding spherical-har- 
monic expansion is simply a Fourier series, the two- 
dimensional analysis is considerably simpler. We show 
how to analyse the shape of a molecule with a single 
inclusion which encloses the centre of charge of the 
molecule. In principle, the method should extend to 
any number of inclusions; however, it may be pro- 
hibitively difficult in practice for more than one or two. 
We intend to consider the problem of uniqueness and 
to extend the analysis to three dimensions in a future 
publication. 

The theory of shape scattering in two dimensions is 

developed in § 2. The effects of a hole are considered in 
§ 3. § 4 contains the expansion of some simple shapes, 
together with the effects of reflexion symmetries and, 
finally, a test case consisting of an ellipse with a con- 
centric circular hole is analysed in § 5. 

It should be noted that as two-dimensional scattering 
is not equivalent to the scattering by a two-dimensional 
slice of a three-dimensional object the problem analysed 
is non-physical. However the technique may be gen- 
eralized to three dimensions. 

2. X-ray shape scattering in two dimensions 

If we consider X-ray scattering in two dimensions 
from a charge cloud having density, Q(r), then the 
relative scattered intensity, I(s), is given by 

I(s) = [A(s)l' (2.1) 

where the scattered amplitude, A(s), is related to the 
charge density by 

A(s)= I dzr exp (i s .  r)Q(r) (2.2) 

and s=21t2-1(M-M0) ,  where M0 and M are the 
incident and scattered beam directions, while 2 is the 
X-ray wavelength. Since Q(r) is real 

A * ( s ) = A ( - s ) .  (2.3) 

At infinite solute dilution all angles of incidence are 
equally likely, and hence the observed scattered inten- 
sity is 

= d~ I(s) (2.4) ,(s) (2,0-11i ~ 
where 

S = s cos ~ i + s sin ~j,  
0 < s < o o ,  0 < ~ < 2 z c .  (2.5) 

If the charge cloud has constant density, Q, then the 
charge distribution is 

Q(r) = ff0[f(~0)- r] (2.6) 

where O(r) is a step-function 

r = r cos ~0~ + r sin ~0~, 
0_<r<c~ ,  0<~0<2zc. (2.7) 
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f(~0) is the radial shape function of the molecule. If it is 
single-valued, i.e. the molecule has no inclusions and 
no surface folds, then it may be expanded as the Fou- 
rier series 

o o  

f(~0)= ~ fz exp (il~o) (2.8) 

where, since f(~0) is real, 

f~ = f  _, . (2.9) 

The reason for introducing this expansion is that the 
angular averaging which occurs in equation (2.4), due 
to the symmetry of molecular orientation at infinite 
dilution, allows the mean scattered intensity, I(s), to 
be expressed directly in terms of the f : s ,  and hence 
enables the shape, f(~0), to be determined. The connex- 
ion is most easily established by first expanding A(s) 
as a Fourier series and then expressing the A(s) ex- 
pansion coefficients in terms of the fz. We expand 

c o  

A(s)= ~ A,(s) exp (iloO (2.10) 
I--~. ~ OO 

where, from equation (2.3), 

A~(s)=exp (ilzc) A_,(s) (2.11) 

and consequently the mean intensity, equation (2.4), 
becomes 

o o  

I(s)=A~(s)+2 ~ IA~(s)l z. (2.12) 
l = l  

The expansion coefficients are defined by 

Az(s)=(2z0-x o de exp (ih)A(s) (2.13) 

I I =(2r0 -~ (ilcO dZr exp • s)0(r) o da exp (ir . (2.14) 

However we may expand (Gradshteyn & Ryzhik, 1965) 

exp (ir. s )=  ~ exp in J,,(r-s) exp {in(q~-~)} 

(2.15) 
and hence 

f2~ d tf(~)drrJ~(rs) A , ( s )=~exp( i l3 -~)~  ° ~° exp (i/(P) j ° • 

(2.16) 

By employing the series representation of the Bessel 
function (Gradshteyn & Ryzhik, 1965) 

J,(rs)= ~ ( -  1)m[2z+Zmm!(m+l-t - 1)!]-X(rs) '+am 
m = 0  

(2.17) 

the r integration of equation (2.16) may be performed 
allowing the A(s) and f(fp)Fourier  coefficients to be 

related by 
o o  

A,(s)=2zc~ ~ g(l,m)fI'+zm+z)(-rs) t+zm (2.18) 
m = 0  

where 

[g(l,m)]-*=2'+2m(l+2m+2)m!(m+l+ 1)! (2.19) 

and f} m is the lth coefficient in the Fourier expansion 
of [f(fp)]N. 

Using the above relation, the mean intensity, equa- 
tion (2.12), becomes 

o o  

l (s)=(2n)zo 2 ~ g(O, nl)g(O, nz) 
l l l t / 1 2 ~ 0  

xf(o 2"' + 2)f(02"2 + 2)(_ s 2)(,, +"a) 

+8n202 ~ E g(l,n,)g(l, nz) 
1=1 n l , n 2 =  1 

x f{z,1 + z)f {a,= + 2). ( _  sZ)a + nl +,a) (2.20) 

while by comparing the expansions off(~0) and [f(~0)] N 
it may easily be seen that 

c o  

f~N)= ~ . . .  ~ f q . . . f z N f i  ' h + ' z + ' ' "  +,N. (2.21) 
11=--oo 1N=--oo 

The shape of the molecule, which is determined by the 
f~, may now be obtained by expanding the intensity 
l(s) as a power series in s z and then fitting a finite 
subset of the fz by calculating the coefficients of the 
powers and then minimizing the differences between 
the observed and calculated values using simplex 
routines (Nelder & Mead, 1965). The explicit procedure 
will be clearer from the example considered in § 5. 

3. The effect of an inclusion 

If the charge cloud contains a hole which encloses the 
centre of charge then the shape function, f(~0), becomes 
double valued. It consequently cannot be expanded 
as a Fourier series. However we may convert it into 
a single-valued function by mapping the outer shape, 
fo(~O), onto the range 0___ ~0 < zt, and the inner shape, 
f~(~0), onto the range zc < ~0 < 2zt. We define 

F(~p) =fo(209) 0 < ~p < re 
=f~(2~p - 2r 0 rc < ~0 < 2~z (3.1) 

with inverse 

fo(~o)=F(½~o) 0<fp<2rc 
f~(fp) = F0z + ½~0) 0<qg<2zc. (3.2) 

The composite function, F(~0), may now be expanded 
as a Fourier series 

F(cp)= ~ Ft exp (-il~o), ~oCnrc. (3.3) 
l =  - c ~  
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Since the charge density is now 

0(r) = ~[ O ( f o( ~O) - r) - O(r - f ~( ~o) ) ] , 

the expression for the l ' th Fourier coefficient, At(s) 
of the scattering amplitude, equation (2.19), becomes 

eo 12~ 
At(s)= ~ g(l,n) ( - i s )  'I+2" d~o exp (il~) 

n=0 0 

x [{fo(~#) t+ 2.+ 2_ {f, (r#) }i+ 2.+ 21 

= - 8 ~ t i  ~ ( 2 l - 2 m -  1) -~ g(l,n) 
n=O m = - - o o  

× "t 2m+lKT(l+2n+2)rk-- i s )  t+2n (3.4) 

and hence the relative intensity is given by 

~ (2ml + 1) (2m 2 + 1) 
I ( s )=64  ~ ~ - ~  g(O, nOg(O'n2) 

nl,n2~O ml,m2= 

X J. 2m1+ l k ' '  (2n, +2) F(2n2 +2)*zm2+l (__ $2)nl +n 2 

+128 ~ 
1=1 r/1,n2=O ml ,m2=--oo  

g(l,n,)g(l,  n2) 
× 

( 2 l -  2m, - 1) ( 2 l -  2mz - 1) 

(/+2n1+2) ~ ( l + 2 n 2 + 2 ) *  s2)nl+n2 X--2m,+, --2m2+* (-- (3.5) 

where 

g( l ,n ) -X=2 '+2"( l+2n+2)n! (n+l+ l)! . (3.6) 

As in the case of a charge cloud without an inclusion 
we may fit the Ft to the scattering data and thus deter- 
mine F(~0). However we may now use the inversion 
formulae, equation (3.2), to obtain both the inner and 
outer surface shapes. 

In order to optimize the information available, the 
range 0 < ~0 < 2n should be split into two parts, whose 
relative lengths are proportional to the areas of the 
inclusion and the outer annulus. However, this would 
further complicate equation (3.5) and would probably 
not yield significant benefits unless the hole was either 
small or comparable in size to the total charge cloud. 

It should be noticed that the rate at which the Ft 
tend to zero as Ill increases will be much slower than 
that of thefz. Sincef(~0) is a continuous function of ~0, 
the [fzl will tend to zero asymptotically, faster than 
any power of l. ]Ft[ behaves similarly as l---> oo through 
even values, while for odd values lFtl"~_l -~, owing to 
the discontinuity of F(~0) at ~0 = n. 

4. The effects of reflexion symmetries 

We begin with some general considerations: that we 
are free to fix the angle of orientation of the shape 
function, that the centre of charge of the molecule 
must be at the origin of coordinates and that reflexion 
symmetries impose certain constraints upon the ex- 
pansion coefficients of the shape. We then calculate the 

expansion coefficients for some simple shapes. The 
general arguments are then applied to the case of a 
molecule with a hole. 

The direction of orientation of the shape function, 
f(~0), is arbitrary. Hence the scattered intensity is un- 
affected by the transformation ~0 -+ ~0+fl where/3 is an 
arbitrary constant angle (the derivation of equation 
(2.4) shows that I(s) is invariant under this transfor- 
mation). This degree of freedom may be partially 
removed, however, by requiring that f× be real, for 
under the above transformation 

Ii =d~0 Jmf~  ~ (2~)-*. sin (~o-fl)f(~o). (4.1) 

Therefore, by choosing fl such that 

tan fl cos ~of(~o) = d~0 sin ~0f(~0) (4.2) 
0 

we may ensure that f l  is real. Notice that from the 
reality of 0(r) it follows, via equation (2.9), that f~ is 
real also. 

Similar conditions follow from the requirement that 
the origin be at the centre of charge 

l dZr r 0(r) =0  (4.3) 

which implies 

f[3' =(2zc)-i S~dqf3(~0) exp (i~0) = 0 .  (4.4) 

If the charge cloud has a plane of symmetry, and we 
choose it such that 

f(~#) =f(2zc-  c#) (4.5) 
then 

Si~sin l~0f(~0)d~0 = 0 (4.6) 

and consequently all of the f~ are real. If the charge 
cloud has two perpendicular planes of symmetry, then 
in addition we may require that 

f(rp) = f ( r c -  ~0) (4.7) 

from which it follows that all of the odd partial waves 
are zero, and incidentally that equation (4.4) is satisfied 
automatically. 

For an ellipse having major and minor axes a and b, 

f(~o)=ab{b z + ( a 2 - b  2) sin 2 9} -1/2 (4.8) 

from which it follows that 
o o  

fZm = 4a ~ ( -- 1)" +m(n + 1)2 
n = m  

x {B(n+ 1,n+ 1 ) B ( n + m +  1, n + m +  1)} -1 

× ( a 2 -  b2)"(4b) -2" 

f2m+l =0  m = 0 , 1 , 2 , . . . .  (4.9) 

where B(n,m) is the beta function. 
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The shape function of a dimer is 

7r 3zc 
f(~)=2Rcos~0 0 < ~ <  2 ; 2 <~0<2n 

zc 3re 
= - 2 R  cos ~o -~- < ~o< 2 (4.10) 

and the corresponding expansion coefficients are 

faro =( -1)"+~4Rn-~(4m"- l )  -~ 
f2m+t=0. (4.11) 

The shape function of an equilateral triangle of side 
21/3 a is 

7~ 
f(9)=a(cos ~)-1 0<~0< -~-, }n<q~<2n 

=a [cos (~--~0)1 -~ 3 _<~o_<n 

=a [cos(2--~--~ +~o)]-t n<~<~n (4.12) 

and, correspondingly, 

f2m=(2n)-~a (1 +2 cos 4rim 2+ I/3 - - - ~ )  { ( -  1)~ l°g ( ) 

+ 4 ~  ( -  1)m+' 3 }  r=* (2 r -  1) sin (2 r -  1) 

[ 
{ -~  ~ (-1)m+' " 2rn/aj 

x (--1) m +2  sm---z-~, m >2 
r = l  /" 

with 

fo = (2n) -13a log / ~2+ ¢3 

f~ =½a(1-  l/3). 

(4.13) 

(4.14) 

In general, if the shape is invariant under an mth order 
rotation group, then only the expansion coefficients, 
ft, for which l is a multiple of m will be non-zero. 

We now consider the general behaviour of the ex- 
pansion coefficients, F~, of a shape function, F(~0), 
corresponding to a molecule with a hole. It follows 
from the definition 

¢==d F' =(2n)-1 ~o ~ exp (il~)fo(2q~) 

+(2n) -* = de0 exp (i/¢0)fx(2~0-2n) (4.15) 

that, since fo and fx are both real, 

Ft=F_,  (4.16) 

this being the analogue of equation (4.9). 

Upon rotating the axis of coordinates through an 
angle fl 

cos + n)So(2 ) ~e(Fl) (2,0 -1 

+ (2n)-* 12=+a e=+a d{0 cos (~0+fl)f,(2~0-2n). (4.17) 

Hence, if we may choose/~ such that the above quantity 
is zero, 

~ e ( F , ) = 0 ,  (4.18) 

the requirement that the centre of charge be at the 
origin becomes 

1 2= d 
0 9 exp (i~0)[fa(~0)-fa(~o)]=0 (4.19) 

and leads to the condition 

F~ a) = - FC2] , I odd. (4.20) 

If the molecule has a plane of symmetry and the axis 
of coordinates is chosen so that 

fo(~o)=fo(2n-~o); f~(~0) = f , ( 2 n -  ~0) (4.21) 

then it follows that 
Fz= ( -  1)'F_,. (4.22) 

Notice that equations (4.16) and (4.22) together imply 
that & is real if l is even and imaginary if l is odd. In 
addition, equation (4.22) is sufficient to guarantee the 
centre of charge condition, equation (4.20). 

5. A test calculation 
In order to test the preceding analysis we have con- 
sidered the scattering from the shape shown in Fig. 1. 

Fig. 1. Ellipse with concentric circular hole. 

This is an ellipse having major and minor axes 1.2 and 
1.0, with a concentric circular hole of radius 0.75. The 
corresponding charge density is 

Q(r)=O(f(q~)-r)-O(h(~o)-r) (5.1) 
where 

f(~0)= {1-0.306 sin 2 9} -1/2 (5.2) 
and 

h(e)=0.75 (5.3) 

are the outer and inner shape functions respectively. 
The scattered intensity, I(s), was determined from 

equation (2.20), suitably modified to take account of 
the double-valuedness of the shape. 
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oo 

I ( s ) =  ~ C(N)s zN (5.4) 
N = 0  

where 
N 

C ( N ) = ( -  1)N(2n) 2 ~ g(O,n)g(O,N-m) 
n = 0  

x {f(oz"+z'-h(2"+2't {fco2N-2"+2)-h(o zN-z"+z)} 
"'0 ) 

N N - - I  

+ ( - -  1)N8zc z ~ ~ g( l , n )g ( l ,U- l -n )  
l----1 n = 0  

× (f~2n+Z)-h[2n+2)}* 

× {f~zN-zt-z,,+Z)_h~ZU-zt-2,,+z)}. (5.5) 

f i  and h~ are the Fourier  expansion coefficients of  f(~0) 
and h(~0) respectively. The values of  C(N) are shown 
in Table 1. These provide the basic input  data f rom 
which the shape was determined using equation (3.5). 

In order to fit the data to a shape without a hole, 
equation (2.20) was employed to calculate coefficients, 
C(N)  from a shape with Fourier  coefficients, fi ,  
0 < l < 3. A simplex routine was then employed to vary 

5 

these unti l  the quanti ty ~ {C(N)-C(N)}Z/C2(N) was 
N = 0  

minimized.  The results of  this fit are shown in the 
third column of  Table 1. The data were then fitted 
using equation (3.5), which assumes the existence of  a 
hole, together with the above simplex procedure (Nel- 
der & Mead, 1965). The results are shown in the fourth 
co lumn of Table 1. 

Compar i son  of  the two sets of  results, in part icular 
5 

the relative magnitudes of  ~ (C(N)-C(N)}z /C2(N) ,  
N = 0  

shows quite clearly that  the second analysis provided 
a much  better fit to the data. This difference would 
still be observable even when the effects of  errors in a 
not ional  experiment are taken into account. (Assuming 
that  the scattered intensity is determined by counting 
techniques under  the best conditions as used in real 
three-dimensional  cases, the error per intensity value 
probably  lies in the range 1 to 5 %.) 

The exact values of  the Fourier  coefficients, f i ,  are 
shown in Table 2. They are compared with those ob- 
tained by the second fitting procedure in Table 3. The 
differences between the coefficients are due to the 
finite number  of l values used in the fit, since it may 
be seen from Table 2 that the exact F : s  decrease rather 

slowly as l increases. Compar i son  of  the C(N) with 
the (C~N) in the second and fourth columns of  Table 1 
however, shows that  experimentally the difference 
would be unobservable,  while the number  of  C(N) ' s  
is l imited to about  five by the experimental  techniques 
which are available at present. 

Table 2. Fourier coefficients determined 
directly from shape, F(~o) 

l 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

&e(Ft) ~¢m(Fz) 
9.215871 × 10-1 0.0 
0.0 1.113137× 10-1 
0.0 0.0 
0.0 4"986946 × 10-2 
2.487228 × 10-z 0.0 
0.0 3"982444 × 10-3 
0.0 0.0 
0.0 7.883293 × 10-3 
1.716657 x 10-3 0.0 
0.0 8.918888 × 10-3 
0.0 0.0 
0.0 7.107132 × 10-3 
1.285163 × 10 -4 0.0 

Table 3. Results of  the fitting procedure 
for an ellipse with a hole 

Fitted values, 
Exact values shape with hole 

~e(Fo) 9"2159 x 10-1 9"2727 × 10-1 
Jm( Fo) 0.0 0"0 
~ e( F1) 0.0 0"0 
Jm(F1) 1"1131 x 10-1 1-3517× 10-i 
~e(F2) 0"0 6"7920 × 10 -4 
Jm(F2) 0"0 - 1"5293 × 10-3 
~2e(F3) 0"0 9.0502 × 10-3 
Jm(F3) 4.9870 x 10-2 - 3"0344 x 10-3 

C o n c l u s i o n s  

The determinat ion of  the shape of molecules having 
an inclusion from an analysis of  X-ray scattering data 
has been formulated in two dimensions. A test case, 
an ellipse with a concentric circular inclusion, has been 
analysed. The results show that the existence and ap- 
proximate dimensions of  the hole can be established 
even when the effects of  experimental  errors are taken 
into account. This appears to justify the basic idea 
of  the analysis, which was to map  the inner surface 
onto one ha l f  of  a circle, the outer surface onto the 

Table 1. Comparison of the exact, C (N), and fitted, C(N), values of  the data 

N C(N) Shape Shape 
C(N) without C(N) with 

hole hole 
0 4.011069 4.759575 3.958255 
1 - 1.805128 - 1-521697 - 1.816531 
2 3.157663 x 10-1 2-505975 x 10-1 3-170141 x 10-1 
3 -2.822063 x 10-z -2.413498 x 10-z -2.824941 x 10-z 
4 1.535482 × 10 -3 1.506340 × 10-3 1.533078 × 10 -3 
5 - 5.658913 × 10-5 - 6.591187 x 10-5 - 5.632429 × 10-5 

{(CN)-C(N)}2 
N C ( N ) 2  1-50 x 10-1 2.54 x 10 -4 
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other half, and then expand the composite function 
as a Fourier series. The principal difficulty caused by 
the inclusion is that the expansion coefficients do not 
decrease as rapidly as in the case without an inclusion. 
The method will be applied to a physical three-dimen- 
sional case in a future publication. 

We wish to thank Mr M. Woodcock for advice and 
assistance with the programming. 
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Limits of Phase Expansion in Direct Methods 

BY J. GASSMANN AND K. ZECHMEISTER 

Abteilung fiir R6ntgenstrukturforschung am Max-Planck-Institut fiir Eiweiss- und Ledelforschung, 
Schillerstrasse 46, 8 Miinchen 15, Germany (BRD) 

(Received 22 November 1971 and in revised form 31 January 1972) 

Phase expansion starting from a few initial phases is investigated with reference to the size of the 
starting set, phase errors in the starting set, the lower limit of the E value in expansion and the different 
phase-determining formulae. The results stress the need for a sufficient size of the initial phase set with 
small phase errors for subsequent application of a phase-expanding procedure. The common basis of 
phase-expansion procedures is shown to consist of a cyclic modification of the preliminary structure 
and explains the impossibility of correcting substantial errors in already known phases associated with 
larger E values by subsequent phase determination for smaller E values. The phenomenon of losing 
structure information by careless application of the tangent formula and consequently the appearance 
of partial structures is pointed out. This information-destroying phase expansion is shown not to exist 
in the 'phase-correction' procedure. 

Introduction 

Several direct methods of crystal structure analysis, 
differing in their theoretical foundation and practical 
application, have been developed. The most widely 
used approaches are the symbolic addition procedure 
and the multisolution method, several different ver- 
sions of which have been programmed. Whereas the 
symbolic addition requires some manual intervention, 
the multisolution method may be done automatically. 
(Karle & Karle, 1966; Germain & Woolfson, 1968). 

Although many structures have been determined 
by direct methods, in some cases, for no obvious 
reasons, there occur difficulties in finding a structure. 
Sometimes a different initial phase set is successful. In 
other examples only partial structures have evolved. 
This investigation has been set up to find reasons for 
this behavio~r of direct methods. As test examples we 
have chosen structures solved by the symbolic addition 
procedure, multisolution and structure invariant 
method (Hauptman, Fisher, Hancock & Norton, 1969). 

Theoretical considerations 

Apart  from the initial stages of phase determination 
in the above-mentioned methods, the addition of new 

phases is done by the tangent formula (Cochran 1955; 
Karle & Hauptman, 1956). A general form of this 
formula is 

Un=<EkEh-k>k , (1) 

where U = unitary structure factor, and E = normalized 
structure factor. 

The index k indicates a summation over reflexions. 
Considering a single contribution with large EkEh-k 
this leads to the triple product relation for phases 

~Ph = 9k + fPh - k • (1 a) 

The summation taken over the largest products 
EkEh-k leads to the tangent formula 

~0h=phase of (Ek. Et,-k)k, 
where k=l imi ted  set of reflexions. (lb) 

If the summation in equation (1) is taken over all re- 
flexions this is called the Hughes formula and is 
equivalent to squaring the electron density in direct 
space (Sayre, 1952). 

The initial situation for the addition of new phases 
in direct methods is as follows. A restricted number of 
phases associated with large E values has been deter- 
mined. These phases, together with their observed E 
values constitute an 'electron density' Qm of a 'prelimi- 


